{ "id": "1910.04479", "version": "v1", "published": "2019-10-10T10:57:13.000Z", "updated": "2019-10-10T10:57:13.000Z", "title": "Remark on a Simple Proof of the Mean Value of $K_2(\\mathcal{O})$ in Function Fields", "authors": [ "J. MacMillan" ], "comment": "6 pages; Comments are welcome", "categories": [ "math.NT" ], "abstract": "Let $\\mathbb{F}_q$ denote a finite field of odd cardinality $q$, $\\mathbb{A}=\\mathbb{F}_q[T]$ the polynomial ring over $\\mathbb{F}_q$ and $k=\\mathbb{F}_q(T)$ the rational function field over $\\mathbb{F}_q$. In this paper, we compute the average value of the size of the group $K_2(\\mathcal{O}_{\\gamma D})$, where $\\mathcal{O}_{\\gamma D}$ denotes the integral closure of $\\mathbb{A}$ in $k(\\sqrt{\\gamma D})$, $D$ is a monic, square-free polynomial of even degree and $\\gamma$ is a fixed generator of $\\mathbb{F}_q^*$.", "revisions": [ { "version": "v1", "updated": "2019-10-10T10:57:13.000Z" } ], "analyses": { "subjects": [ "11M38", "11G20", "11M06", "13F30", "11R58", "14G10" ], "keywords": [ "mean value", "simple proof", "rational function field", "odd cardinality", "finite field" ], "note": { "typesetting": "TeX", "pages": 6, "language": "en", "license": "arXiv", "status": "editable" } } }