{ "id": "1910.03972", "version": "v1", "published": "2019-10-09T13:17:31.000Z", "updated": "2019-10-09T13:17:31.000Z", "title": "Local well-posedness of the two-dimensional Dirac-Klein-Gordon equations in Fourier-Lebesgue spaces", "authors": [ "Hartmut Pecher" ], "comment": "9 pages", "categories": [ "math.AP" ], "abstract": "The local well-posedness problem is considered for the Dirac-Klein-Gordon system in two space dimensions for data in Fourier-Lebesgue spaces $\\hat{H}^{s,r}$ , where $\\|f\\|_{\\hat{H}^{s,r}} = \\| \\langle \\xi \\rangle^s \\hat{f}\\|_{L^{r'}}$ and $r$ and $r'$ denote dual exponents. We lower the regularity assumptions on the data with respect to scaling improving the results of d'Ancona, Foschi and Selberg in the classical case $r=2$ . Crucial is the fact that the nonlinearities fulfill a null condition as detected by these authors.", "revisions": [ { "version": "v1", "updated": "2019-10-09T13:17:31.000Z" } ], "analyses": { "subjects": [ "35Q40", "35L70" ], "keywords": [ "two-dimensional dirac-klein-gordon equations", "fourier-lebesgue spaces", "local well-posedness problem", "denote dual exponents", "space dimensions" ], "note": { "typesetting": "TeX", "pages": 9, "language": "en", "license": "arXiv", "status": "editable" } } }