{ "id": "1910.03920", "version": "v1", "published": "2019-10-09T12:09:09.000Z", "updated": "2019-10-09T12:09:09.000Z", "title": "Triebel-Lizorkin capacity and Hausdorff measure in metric spaces", "authors": [ "Nijjwal Karak" ], "comment": "to appear in Math. Slovaca", "categories": [ "math.FA" ], "abstract": "We provide a upper bound for Triebel-Lizorkin capacity in metric settings in terms of Hausdorff measure. On the other hand, we also prove that the sets with zero capacity have generalized Hausdorff $h$-measure zero for a suitable gauge function $h.$", "revisions": [ { "version": "v1", "updated": "2019-10-09T12:09:09.000Z" } ], "analyses": { "keywords": [ "hausdorff measure", "triebel-lizorkin capacity", "metric spaces", "metric settings", "zero capacity" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }