{ "id": "1910.03541", "version": "v1", "published": "2019-10-08T16:55:50.000Z", "updated": "2019-10-08T16:55:50.000Z", "title": "Global $C^{2,α}$ estimates for the Monge-Ampère equation on polygonal domains in the plane", "authors": [ "Nam Q. Le", "Ovidiu Savin" ], "categories": [ "math.AP" ], "abstract": "We classify global solutions of the Monge-Amp\\`ere equation $\\det D^2 u=1 $ on the first quadrant in the plane with quadratic boundary data. As an application, we obtain global $C^{2,\\alpha}$ estimates for the non-degenerate Monge-Amp\\`ere equation in convex polygonal domains in $\\mathbb R^2$ provided a globally $C^2$, convex strict subsolution exists.", "revisions": [ { "version": "v1", "updated": "2019-10-08T16:55:50.000Z" } ], "analyses": { "keywords": [ "monge-ampère equation", "quadratic boundary data", "convex polygonal domains", "convex strict subsolution", "classify global solutions" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }