{ "id": "1910.03361", "version": "v1", "published": "2019-10-08T12:25:14.000Z", "updated": "2019-10-08T12:25:14.000Z", "title": "Topological properties of Lorenz maps derived from unimodal maps", "authors": [ "Ana Anušić", "Henk Bruin", "Jernej Činč" ], "categories": [ "math.DS" ], "abstract": "A symmetric Lorenz map is obtain by ``flipping'' one of the two branches of a symmetric unimodal map. We use this to derive a Sharkovsky-like theorem for symmetric Lorenz maps, and also to find cases where the unimodal map restricted to the critical omega-limit set is conjugate to a Sturmian shift. This has connections with properties of unimodal inverse limit spaces embedded as attractors of some planar homeomorphisms.", "revisions": [ { "version": "v1", "updated": "2019-10-08T12:25:14.000Z" } ], "analyses": { "subjects": [ "37E05", "37E10", "37E15", "37E30", "37E45" ], "keywords": [ "topological properties", "symmetric lorenz map", "unimodal inverse limit spaces", "symmetric unimodal map", "critical omega-limit set" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }