{ "id": "1910.03205", "version": "v1", "published": "2019-10-08T04:16:49.000Z", "updated": "2019-10-08T04:16:49.000Z", "title": "On a conjecture of Sharifi and Mazur's Eisenstein ideal", "authors": [ "Emmanuel Lecouturier", "Jun Wang" ], "comment": "22 pages. Comments welcome!", "categories": [ "math.NT" ], "abstract": "Let $N$ and $p$ be prime numbers $\\geq 5$ such that $p$ divides $N-1$. Let $I$ be Mazur's Eisenstein ideal of level $N$ and $H_+$ be the plus part of $H_1(X_0(N), \\mathbf{Z}_p)$ for the complex conjugation. We give a conjectural explicit description of the group $I\\cdot H_+/I^2\\cdot H_+$ in terms of the second $K$-group of the cyclotomic field $\\mathbf{Q}(\\zeta_N)$. We prove that this conjecture follows from a conjecture of Sharifi about some Eisenstein ideal of level $\\Gamma_1(N)$. Following the work of Fukaya--Kato, we prove partial results on Sharifi's conjecture. This allows us to prove partial results on our conjecture.", "revisions": [ { "version": "v1", "updated": "2019-10-08T04:16:49.000Z" } ], "analyses": { "keywords": [ "mazurs eisenstein ideal", "partial results", "conjectural explicit description", "sharifis conjecture", "cyclotomic field" ], "note": { "typesetting": "TeX", "pages": 22, "language": "en", "license": "arXiv", "status": "editable" } } }