{ "id": "1910.02335", "version": "v1", "published": "2019-10-05T22:26:28.000Z", "updated": "2019-10-05T22:26:28.000Z", "title": "Non-asymptotic $\\ell_1$ spaces with unique $\\ell_1$ asymptotic model", "authors": [ "Spiros A. Argyros", "Alexandros Georgiou", "Pavlos Motakis" ], "comment": "20 pages", "categories": [ "math.FA" ], "abstract": "A recent result of D. Freeman, E. Odell, B. Sari, and B. Zheng states that whenever a separable Banach space not containing $\\ell_1$ has the property that all asymptotic models generated by weakly null sequences are equivalent to the unit vector basis of $c_0$ then the space is Asymptotic $c_0$. We show that if we replace $c_0$ with $\\ell_1$ then this result is no longer true. Moreover, a stronger result of B. Maurey - H. P. Rosenthal type is presented, namely, there exists a reflexive Banach space with an unconditional basis admitting $\\ell_1$ as a unique asymptotic model whereas any subsequence of the basis generates a non-Asymptotic $\\ell_1$ subspace.", "revisions": [ { "version": "v1", "updated": "2019-10-05T22:26:28.000Z" } ], "analyses": { "subjects": [ "46B03", "46B06", "46B25", "46B45" ], "keywords": [ "non-asymptotic", "unit vector basis", "unique asymptotic model", "reflexive banach space", "rosenthal type" ], "note": { "typesetting": "TeX", "pages": 20, "language": "en", "license": "arXiv", "status": "editable" } } }