{ "id": "1910.02295", "version": "v1", "published": "2019-10-05T17:09:33.000Z", "updated": "2019-10-05T17:09:33.000Z", "title": "Sharp lower bound for the first eigenvalue of the Weighted $p$-Laplacian", "authors": [ "Xiaolong Li", "Kui Wang" ], "comment": "Comments are welcome", "categories": [ "math.AP", "math.DG" ], "abstract": "We prove sharp lower bound estimates for the first nonzero eigenvalue of the weighted $p$-Lapacian operator with $1< p< \\infty$ on a compact Bakry-Emery manifold $(M^n,g,f)$ satisfying $\\Ric+\\nabla^2 f \\geq \\kappa \\, g$, provided that either $1