{ "id": "1910.01862", "version": "v1", "published": "2019-10-04T10:38:27.000Z", "updated": "2019-10-04T10:38:27.000Z", "title": "Stability estimates for the conformal group of $\\mathbb{S}^{n-1}$ in dimension $n\\geq 3$", "authors": [ "Stephan Luckhaus", "Konstantinos Zemas" ], "comment": "38 pages", "categories": [ "math.DG" ], "abstract": "The purpose of this paper is to exhibit a quantitative stability result for the class of M\\\"obius transformations of $\\mathbb{S}^{n-1}$ when $n\\geq 3$. The main estimate is of local nature and asserts that for a Lipschitz map that is apriori close to a M\\\"obius transformation, an average conformal-isoperimetric type of deficit controls the deviation (in an average sense) of the map in question from a particular M\\\"obius map. The optimality of the result together with its link with the geometric rigidity of the special orthogonal group are also discussed.", "revisions": [ { "version": "v1", "updated": "2019-10-04T10:38:27.000Z" } ], "analyses": { "subjects": [ "30C70" ], "keywords": [ "conformal group", "stability estimates", "special orthogonal group", "average conformal-isoperimetric type", "stability result" ], "note": { "typesetting": "TeX", "pages": 38, "language": "en", "license": "arXiv", "status": "editable" } } }