{ "id": "1910.01824", "version": "v1", "published": "2019-10-04T07:35:21.000Z", "updated": "2019-10-04T07:35:21.000Z", "title": "Mean Value of $S$-arithmetic Siegel transform: Rogers' mean value theorem for $S$-arithmetic Siegel transform and applications to the geometry of numbers", "authors": [ "Jiyoung Han" ], "comment": "27 pages", "categories": [ "math.DS", "math.NT" ], "abstract": "We prove the second moment theorem for Siegel transform defined over the space of unimodular $S$-lattices in $\\mathbb Q_S^d$, $d\\ge 3$, following the work of Rogers (1955). As applications, we obtain the random statements of Gauss circle problem for any convex sets in $\\mathbb Q_S^d$ containing the origin and of the effective Oppenheim conjecture for $S$-arithmetic quadratic forms.", "revisions": [ { "version": "v1", "updated": "2019-10-04T07:35:21.000Z" } ], "analyses": { "subjects": [ "11H60", "11P21", "37A45" ], "keywords": [ "arithmetic siegel transform", "mean value theorem", "applications", "second moment theorem", "gauss circle problem" ], "note": { "typesetting": "TeX", "pages": 27, "language": "en", "license": "arXiv", "status": "editable" } } }