{ "id": "1910.01437", "version": "v1", "published": "2019-10-03T13:04:29.000Z", "updated": "2019-10-03T13:04:29.000Z", "title": "On the pair correlations of powers of real numbers", "authors": [ "Christoph Aistleitner", "Simon Baker" ], "categories": [ "math.NT", "math-ph", "math.MP", "math.PR" ], "abstract": "A classical theorem of Koksma states that for Lebesgue almost every $x>1$ the sequence $(x^n)_{n=1}^{\\infty}$ is uniformly distributed modulo one. In the present paper we extend Koksma's theorem to the pair correlation setting. More precisely, we show that for Lebesgue almost every $x>1$ the pair correlations of the fractional parts of $(x^n)_{n=1}^{\\infty}$ are asymptotically Poissonian. The proof is based on a martingale approximation method.", "revisions": [ { "version": "v1", "updated": "2019-10-03T13:04:29.000Z" } ], "analyses": { "subjects": [ "11K06", "11K60" ], "keywords": [ "real numbers", "martingale approximation method", "extend koksmas theorem", "fractional parts", "koksma states" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }