{ "id": "1910.01374", "version": "v1", "published": "2019-10-03T09:36:13.000Z", "updated": "2019-10-03T09:36:13.000Z", "title": "Minimum supports of eigenfunctions with the second largest eigenvalue of the Star graph", "authors": [ "Vladislav Kabanov", "Elena V. Konstantinova", "Leonid Shalaginov", "Alexandr Valyuzhenich" ], "categories": [ "math.CO" ], "abstract": "The Star graph $S_n$, $n\\ge 3$, is the Cayley graph on the symmetric group $Sym_n$ generated by the set of transpositions $\\{(12),(13),\\ldots,(1n)\\}$. In this work we study eigenfunctions of $S_n$ corresponding to the second largest eigenvalue $n-2$. For $n\\ge 8$ and $n=3$, we find the minimum cardinality of the support of an eigenfunction of $S_n$ corresponding to the second largest eigenvalue and obtain a characterization of eigenfunctions with the minimum cardinality of the support.", "revisions": [ { "version": "v1", "updated": "2019-10-03T09:36:13.000Z" } ], "analyses": { "subjects": [ "05C50", "05C25", "05E15", "05B30" ], "keywords": [ "second largest eigenvalue", "star graph", "minimum supports", "minimum cardinality", "study eigenfunctions" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }