{ "id": "1910.01311", "version": "v1", "published": "2019-10-03T05:44:58.000Z", "updated": "2019-10-03T05:44:58.000Z", "title": "Adaptive IGAFEM with optimal convergence rates: T-splines", "authors": [ "Gregor Gantner", "Dirk Praetorius" ], "comment": "arXiv admin note: text overlap with arXiv:1701.07764", "categories": [ "math.NA", "cs.NA" ], "abstract": "We consider an adaptive algorithm for finite element methods for the isogeometric analysis (IGAFEM) of elliptic (possibly non-symmetric) second-order partial differential equations. We employ analysis-suitable T-splines of arbitrary odd degree on T-meshes generated by the refinement strategy of [Morgenstern, Peterseim, Comput. Aided Geom. Design 34 (2015)] in 2D resp. [Morgenstern, SIAM J. Numer. Anal. 54 (2016)] in 3D. Adaptivity is driven by some weighted residual a posteriori error estimator. We prove linear convergence of the error estimator (resp. the sum of energy error plus data oscillations) with optimal algebraic rates.", "revisions": [ { "version": "v1", "updated": "2019-10-03T05:44:58.000Z" } ], "analyses": { "keywords": [ "optimal convergence rates", "adaptive igafem", "energy error plus data oscillations", "error estimator", "second-order partial differential equations" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }