{ "id": "1910.01282", "version": "v1", "published": "2019-10-03T02:23:10.000Z", "updated": "2019-10-03T02:23:10.000Z", "title": "The Triangle Operator", "authors": [ "Eyvindur A. Palsson", "Sean R. Sovine" ], "comment": "15 pages", "categories": [ "math.CA" ], "abstract": "We examine the averaging operator corresponding to the manifold in $\\mathbb{R}^{2d}$ of pairs of points $(u,v)$ satisfying $|u| = |v| = |u - v| = 1$, so that $\\{0,u,v\\}$ is the set of vertices of an equilateral triangle. We establish $L^p \\times L^q \\rightarrow L^r$ boundedness for $T$ for $(1/p, 1/q, 1/r)$ in the convex hull of the set of points $\\lbrace (0, 0, 0) ,\\, (1, 0 , 1) ,\\, (0, 1, 1) , \\, ({1}/{p_d}, {1}/{p_d}, {2}/{p_d}) \\rbrace$, where $p_d = \\frac{5d}{3d - 2}$.", "revisions": [ { "version": "v1", "updated": "2019-10-03T02:23:10.000Z" } ], "analyses": { "subjects": [ "42B20" ], "keywords": [ "triangle operator", "convex hull", "equilateral triangle" ], "note": { "typesetting": "TeX", "pages": 15, "language": "en", "license": "arXiv", "status": "editable" } } }