{ "id": "1910.01239", "version": "v1", "published": "2019-10-02T22:12:58.000Z", "updated": "2019-10-02T22:12:58.000Z", "title": "Undecidability, unit groups, and some totally imaginary infinite extensions of $\\mathbb{Q}$", "authors": [ "Caleb Springer" ], "comment": "10 pages", "categories": [ "math.NT", "math.LO" ], "abstract": "We produce new examples of totally imaginary infinite extensions of $\\mathbb{Q}$ which have undecidable first-order theory by generalizing the methods used by Martinez-Ranero, Utreras and Videla for $\\mathbb{Q}^{(2)}$. In particular, we use parametrized families of polynomials whose roots are totally real units to apply methods originally developed to prove the undecidability of totally real fields.", "revisions": [ { "version": "v1", "updated": "2019-10-02T22:12:58.000Z" } ], "analyses": { "subjects": [ "11U05" ], "keywords": [ "totally imaginary infinite extensions", "unit groups", "undecidability", "totally real fields", "undecidable first-order theory" ], "note": { "typesetting": "TeX", "pages": 10, "language": "en", "license": "arXiv", "status": "editable" } } }