{ "id": "1909.13549", "version": "v1", "published": "2019-09-30T09:28:32.000Z", "updated": "2019-09-30T09:28:32.000Z", "title": "Partitions into polynomial with the number of parts in arithmetic progression", "authors": [ "Nian Hong Zhou" ], "comment": "12 pages", "categories": [ "math.NT", "math.CO" ], "abstract": "Let $k, a\\in \\mathbb{N}$ and let $f(x)\\in\\mathbb{Q}[x]$ be a polynomial with degree ${\\rm deg}(f)\\ge 1$ such that all elements of the sequence $\\{f(n)\\}_{n\\in\\mathbb{N}}$ lies on $ \\mathbb{N}$ and $\\gcd(\\{f(n)\\}_{n\\in\\mathbb{N}})=1$. Let $p_f(n)$ and $p_f(a,k;n)$ denotes the number of partitions of integer $n$ whose parts taken from the sequence $\\{f(n)\\}_{n\\in\\mathbb{N}}$ and the number of parts of those partitions are congruent to $a$ modulo $k$, respectively. We prove that there exist a constant $\\delta_{f}\\in\\mathbb{R}_+$ depending only on $f$ such that $$p_f(a,k;n)=\\frac{p_f(n)}{k}\\left[1+O\\left(n\\exp\\left(-\\delta_{f}k^{-2}n^{\\frac{1}{1+{\\rm deg}(f)}}\\right)\\right)\\right],$$ holds uniformly for all $a,k, n\\in\\mathbb{N}$ with $k^{2+2{\\rm deg}(f)}\\ll n$, as $n$ tends to infinity.", "revisions": [ { "version": "v1", "updated": "2019-09-30T09:28:32.000Z" } ], "analyses": { "subjects": [ "11P82", "11P83", "05A17", "11L07" ], "keywords": [ "arithmetic progression", "partitions", "polynomial", "parts taken" ], "note": { "typesetting": "TeX", "pages": 12, "language": "en", "license": "arXiv", "status": "editable" } } }