{ "id": "1909.13539", "version": "v1", "published": "2019-09-30T09:09:05.000Z", "updated": "2019-09-30T09:09:05.000Z", "title": "The Maximum Number of Paths of Length Three in a Planar Graph", "authors": [ "Ervin Győri", "Addisu Paulos", "Nika Salia", "Casey Tompkins", "Oscar Zamora" ], "categories": [ "math.CO" ], "abstract": "Let $f(n,H)$ denote the maximum number of copies of $H$ possible in an $n$-vertex planar graph. The function $f(n,H)$ has been determined when $H$ is a cycle of length $3$ or $4$ by Hakimi and Schmeichel and when $H$ is a complete bipartite graph with smaller part of size 1 or 2 by Alon and Caro. We determine $f(n,H)$ exactly in the case when $H$ is a path of length 3.", "revisions": [ { "version": "v1", "updated": "2019-09-30T09:09:05.000Z" } ], "analyses": { "keywords": [ "maximum number", "complete bipartite graph", "vertex planar graph", "smaller part", "schmeichel" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }