{ "id": "1909.13095", "version": "v1", "published": "2019-09-28T13:39:13.000Z", "updated": "2019-09-28T13:39:13.000Z", "title": "Cubic Hodge integrals and integrable hierarchies of Volterra type", "authors": [ "Kanehisa Takasaki" ], "comment": "latex2e, amsmath,amssymb,amsthm, 29pp, no figure", "categories": [ "math-ph", "hep-th", "math.MP", "nlin.SI" ], "abstract": "A tau function of the 2D Toda hierarchy can be obtained from a generating function of the two-partition cubic Hodge integrals. The associated Lax operators turn out to satisfy an algebraic relation. This algebraic relation can be used to identify a reduced system of the 2D Toda hierarchy that emerges when the parameter $\\tau$ of the cubic Hodge integrals takes a special value. Integrable hierarchies of the Volterra type are shown to be such reduced systems. They can be derived for positive rational values of $\\tau$. In particular, the discrete series $\\tau = 1,2,\\ldots$ correspond to the Volterra lattice and its hungry generalizations. This provides a new explanation to the integrable structures of the cubic Hodge integrals observed by Dubrovin et al. in the perspectives of tau-symmetric integrable Hamiltonian PDEs.", "revisions": [ { "version": "v1", "updated": "2019-09-28T13:39:13.000Z" } ], "analyses": { "subjects": [ "14N35", "37K10" ], "keywords": [ "volterra type", "integrable hierarchies", "2d toda hierarchy", "two-partition cubic hodge integrals", "algebraic relation" ], "note": { "typesetting": "LaTeX", "pages": 29, "language": "en", "license": "arXiv", "status": "editable" } } }