{ "id": "1909.13074", "version": "v1", "published": "2019-09-28T11:32:23.000Z", "updated": "2019-09-28T11:32:23.000Z", "title": "Primitive values of rational functions at primitive elements of a finite field", "authors": [ "Stephen D. Cohen", "Hariom Sharma", "Rajendra Sharma" ], "comment": "12 pages", "categories": [ "math.NT", "math.AC" ], "abstract": "Given a prime power $q$ and an integer $n\\geq2$, we establish a sufficient condition for the existence of a primitive pair $(\\alpha,f(\\alpha))$ where $\\alpha \\in \\mathbb{F}_q$ and $f(x) \\in \\mathbb{F}_q(x)$ is a rational function of degree $n$. (Here $f=f_1/f_2$, where $f_1, f_2$ are coprime polynomials of degree $n_1,n_2$, respectively, and $n_1+n_2=n$.) For any $n$, such a pair is guaranteed to exist for sufficiently large $q$. Indeed, when $n=2$, such a pair definitely does {\\em not} exist only for 28 values of $q$ and possibly (but unlikely) only for at most $3911$ other values of $q$.", "revisions": [ { "version": "v1", "updated": "2019-09-28T11:32:23.000Z" } ], "analyses": { "subjects": [ "11T23" ], "keywords": [ "rational function", "finite field", "primitive values", "primitive elements", "sufficient condition" ], "note": { "typesetting": "TeX", "pages": 12, "language": "en", "license": "arXiv", "status": "editable" } } }