{ "id": "1909.12883", "version": "v1", "published": "2019-09-27T19:29:01.000Z", "updated": "2019-09-27T19:29:01.000Z", "title": "Multipliers and operator space structure of weak product spaces", "authors": [ "Raphaël Clouâtre", "Michael Hartz" ], "comment": "21 pages", "categories": [ "math.FA", "math.OA" ], "abstract": "In the theory of reproducing kernel Hilbert spaces, weak product spaces generalize the notion of the Hardy space $H^1$. For complete Nevanlinna-Pick spaces $\\mathcal H$, we characterize all multipliers of the weak product space $\\mathcal H \\odot \\mathcal H$. In particular, we show that if $\\mathcal H$ has the so-called column-row property, then the multipliers of $\\mathcal H$ and of $\\mathcal H \\odot \\mathcal H$ coincide. This result applies in particular to the classical Dirichlet space and to the Drury-Arveson space on a finite dimensional ball. As a key device, we exhibit a natural operator space structure on $\\mathcal H \\odot \\mathcal H$, which enables the use of dilations of completely bounded maps.", "revisions": [ { "version": "v1", "updated": "2019-09-27T19:29:01.000Z" } ], "analyses": { "subjects": [ "46E22", "46L07", "47A20" ], "keywords": [ "multipliers", "natural operator space structure", "complete nevanlinna-pick spaces", "reproducing kernel hilbert spaces", "finite dimensional ball" ], "note": { "typesetting": "TeX", "pages": 21, "language": "en", "license": "arXiv", "status": "editable" } } }