{ "id": "1909.12143", "version": "v1", "published": "2019-09-26T14:27:02.000Z", "updated": "2019-09-26T14:27:02.000Z", "title": "Zsigmondy's Theorem for Chebyshev polynomials", "authors": [ "Stefan BaraƄczuk" ], "categories": [ "math.NT" ], "abstract": "For every natural number $a>1$ consider the sequence $(T_{n}(a)-1)_{n=1}^{\\infty}$ defined by Chebyshev polynomials $T_{n}$. We list all pairs $(n,a)$ for which the term $T_{n}(a)-1$ has no primitive prime divisor.", "revisions": [ { "version": "v1", "updated": "2019-09-26T14:27:02.000Z" } ], "analyses": { "keywords": [ "chebyshev polynomials", "zsigmondys theorem", "natural number", "primitive prime divisor" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }