{ "id": "1909.11563", "version": "v1", "published": "2019-09-25T15:45:58.000Z", "updated": "2019-09-25T15:45:58.000Z", "title": "Friedrichs/Poincare Type Constants for Gradient, Rotation, and Divergence: Theory and Numerical Experiments", "authors": [ "Dirk Pauly", "Jan Valdman" ], "comment": "41 pages, 9 figures", "categories": [ "math.AP", "cs.NA", "math.FA", "math.NA" ], "abstract": "We give some theoretical as well as computational results on Laplace and Maxwell constants. We consider mixed boundary conditions and bounded Lipschitz domains of arbitrary topology.", "revisions": [ { "version": "v1", "updated": "2019-09-25T15:45:58.000Z" } ], "analyses": { "keywords": [ "friedrichs/poincare type constants", "numerical experiments", "divergence", "computational results", "maxwell constants" ], "note": { "typesetting": "TeX", "pages": 41, "language": "en", "license": "arXiv", "status": "editable" } } }