{ "id": "1909.10748", "version": "v1", "published": "2019-09-24T07:53:48.000Z", "updated": "2019-09-24T07:53:48.000Z", "title": "On the types for supercuspidal representations of inner forms of $\\mathrm{GL}_{N}$", "authors": [ "Yuki Yamamoto" ], "comment": "28 pages", "categories": [ "math.NT", "math.RT" ], "abstract": "Let $F$ be a non-Archimedean local field, $A$ be a central simple $F$-algebra, and $G$ be the multiplicative group of $A$. It is known that for every irreducible supercuspidal representation $\\pi$, there exists a $[G, \\pi]_{G}$-type $(J, \\lambda)$, called a (maximal) simple type. We will show that $[G, \\pi]_{G}$-types defined over some maximal compact subgroup are unique up to $G$-conjugations under some unramifiedness assumption on a simple stratum.", "revisions": [ { "version": "v1", "updated": "2019-09-24T07:53:48.000Z" } ], "analyses": { "keywords": [ "inner forms", "non-archimedean local field", "maximal compact subgroup", "simple stratum", "central simple" ], "note": { "typesetting": "TeX", "pages": 28, "language": "en", "license": "arXiv", "status": "editable" } } }