{ "id": "1909.09500", "version": "v1", "published": "2019-09-20T13:35:40.000Z", "updated": "2019-09-20T13:35:40.000Z", "title": "On $n$th roots of normal operators", "authors": [ "B. P. Duggal", "I. H. Kim" ], "comment": "9 pages", "categories": [ "math.FA" ], "abstract": "For $n$-normal operators $A$ [2, 4, 5], equivalently $n$-th roots $A$ of normal Hilbert space operators, both $A$ and $A^*$ satisfy the Bishop--Eschmeier--Putinar property $(\\beta)_{\\epsilon}$, $A$ is decomposable and the quasi-nilpotent part $H_0(A-\\lambda)$ of $A$ satisfies $H_0(A-\\lambda)^{-1}(0)=(A-\\lambda)^{-1}(0)$ for every non-zero complex $\\lambda$. $A$ satisfies every Weyl and Browder type theorem, and a sufficient condition for $A$ to be normal is that either $A$ is dominant or $A$ is a class ${\\mathcal A}(1,1)$ operator.", "revisions": [ { "version": "v1", "updated": "2019-09-20T13:35:40.000Z" } ], "analyses": { "subjects": [ "47A05", "47A55", "47A80", "47A10" ], "keywords": [ "normal operators", "th roots", "normal hilbert space operators", "browder type theorem", "sufficient condition" ], "note": { "typesetting": "TeX", "pages": 9, "language": "en", "license": "arXiv", "status": "editable" } } }