{ "id": "1909.09322", "version": "v1", "published": "2019-09-20T04:49:53.000Z", "updated": "2019-09-20T04:49:53.000Z", "title": "Integral operators with rough kernels in variable Lebesgue spaces", "authors": [ "Marta Urciuolo", "Lucas Vallejos" ], "categories": [ "math.CA" ], "abstract": "In this paper we study integral operators with kernels \\begin{equation*} K(x,y)= k_1( x- A_1y)...k_m( x-A_my), \\end{equation*} $k_i(x)=\\frac{\\Omega_i(x)}{|x|^{n/q_i}}$ where $\\Omega_i: \\mathbb{R}^n\\to \\mathbb{R}$ are homogeneous functions of degree zero, satisfying a size and a Dini condition, $A_{i}$ are certain invertible matrices, and $\\frac n{q_1}+\\dots\\frac n{q_m}=n-\\alpha,$ $0\\leq \\alpha