{ "id": "1909.09245", "version": "v1", "published": "2019-09-19T22:01:30.000Z", "updated": "2019-09-19T22:01:30.000Z", "title": "Annular Rasmussen invariants: Properties and 3-braid classification", "authors": [ "Gage Martin" ], "comment": "33 pages, 26 figures", "categories": [ "math.GT", "math.QA" ], "abstract": "We prove that for a fixed braid index there are only finitely many possible shapes of the annular Rasmussen $d_t$ invariant of braid closures. Applying the same perspective to the knot Floer invariant $\\Upsilon_K(t)$, we show that for a fixed concordance genus of $K$ there are only finitely many possibilities for $\\Upsilon_K(t)$. Focusing on the case of 3-braids, we compute the Rasmussen $s$ invariant and the annular Rasmussen $d_t$ invariant of all 3-braid closures. As a corollary, we show that the vanishing/non-vanishing of the $\\psi$ invariant is entirely determined by the $s$ invariant and the self-linking number.", "revisions": [ { "version": "v1", "updated": "2019-09-19T22:01:30.000Z" } ], "analyses": { "subjects": [ "57M27", "20F36", "81R50", "57Q60", "57M25" ], "keywords": [ "annular rasmussen invariants", "properties", "classification", "knot floer invariant", "fixed concordance genus" ], "note": { "typesetting": "TeX", "pages": 33, "language": "en", "license": "arXiv", "status": "editable" } } }