{ "id": "1909.08680", "version": "v1", "published": "2019-09-18T20:09:49.000Z", "updated": "2019-09-18T20:09:49.000Z", "title": "Poset Ramsey Numbers for Boolean Lattices", "authors": [ "Linyuan Lu", "Joshua C. Thompson" ], "comment": "19 pages", "categories": [ "math.CO" ], "abstract": "A subposet $Q'$ of a poset $Q$ is a \\textit{copy of a poset} $P$ if there is a bijection $f$ between elements of $P$ and $Q'$ such that $x \\le y$ in $P$ iff $f(x) \\le f(y)$ in $Q'$. For posets $P, P'$, let the \\textit{poset Ramsey number} $R(P,P')$ be the smallest $N$ such that no matter how the elements of the Boolean lattice $Q_N$ are colored red and blue, there is a copy of $P$ with all red elements or a copy of $P'$ with all blue elements. Axenovich and Walzer introduced this concept in \\textit{Order} (2017), where they proved $R(Q_2, Q_n) \\le 2n + 2$ and $R(Q_n, Q_m) \\le mn + n + m$, where $Q_n$ is the Boolean lattice of dimension $n$. They later proved $2n \\le R(Q_n, Q_n) \\le n^2 + 2n$. Walzer later proved $R(Q_n, Q_n) \\le n^2 + 1$. We provide some improved bounds for $R(Q_n, Q_m)$ for various $n,m \\in \\mathbb{N}$. In particular, we prove that $R(Q_n, Q_n) \\le n^2 - n + 2$, $R(Q_2, Q_n) \\le \\frac{5}{3}n + 2$, and $R(Q_3, Q_n) \\le \\frac{37}{16}n + \\frac{39}{16}$. We also prove that $R(Q_2,Q_3) = 5$, and $R(Q_m, Q_n) \\le (m - 2 + \\frac{9m - 9}{(2m - 3)(m + 1)})n + m + 3$ for all $n \\ge m \\ge 4$.", "revisions": [ { "version": "v1", "updated": "2019-09-18T20:09:49.000Z" } ], "analyses": { "subjects": [ "06A07", "05C55" ], "keywords": [ "boolean lattice", "poset ramsey numbers", "blue elements", "red elements" ], "note": { "typesetting": "TeX", "pages": 19, "language": "en", "license": "arXiv", "status": "editable" } } }