{ "id": "1909.08301", "version": "v1", "published": "2019-09-18T09:14:05.000Z", "updated": "2019-09-18T09:14:05.000Z", "title": "Zeros of $L(s)+L(2s)+\\cdots+L(Ns)$ in the region of absolute convergence", "authors": [ "Łukasz Pańkowski", "Mattia Righetti" ], "comment": "7 pages, 1 figure", "categories": [ "math.NT" ], "abstract": "In this paper we show that for every Dirichlet $L$-function $L(s,\\chi)$ and every $N\\geq 2$ the Dirichlet series $L(s,\\chi)+L(2s,\\chi)+\\cdots+L(Ns,\\chi)$ have infinitely many zeros for $\\sigma>1$. Moreover we show that for many general $L$-functions with an Euler product the same holds if $N$ is sufficiently large, or if $N=2$. On the other hand we show with an example the the method doesn't work in general for $N=3$.", "revisions": [ { "version": "v1", "updated": "2019-09-18T09:14:05.000Z" } ], "analyses": { "subjects": [ "11M41", "11M26" ], "keywords": [ "absolute convergence", "euler product", "dirichlet series", "sufficiently large" ], "note": { "typesetting": "TeX", "pages": 7, "language": "en", "license": "arXiv", "status": "editable" } } }