{ "id": "1909.08078", "version": "v1", "published": "2019-09-17T20:22:09.000Z", "updated": "2019-09-17T20:22:09.000Z", "title": "Mad families of vector subspaces and the smallest nonmeager set of reals", "authors": [ "Iian B. Smythe" ], "comment": "8 pages", "categories": [ "math.LO" ], "abstract": "We show that a parametrized $\\diamondsuit$ principle, corresponding to the uniformity of the meager ideal, implies that the minimum cardinality of an infinite maximal almost disjoint family of block subspaces in a countable vector space is $\\aleph_1$. Consequently, this cardinal invariant is $\\aleph_1$ in the Miller model.", "revisions": [ { "version": "v1", "updated": "2019-09-17T20:22:09.000Z" } ], "analyses": { "subjects": [ "03E17", "15A03" ], "keywords": [ "smallest nonmeager set", "mad families", "vector subspaces", "cardinal invariant", "meager ideal" ], "note": { "typesetting": "TeX", "pages": 8, "language": "en", "license": "arXiv", "status": "editable" } } }