{ "id": "1909.07314", "version": "v1", "published": "2019-09-16T16:18:17.000Z", "updated": "2019-09-16T16:18:17.000Z", "title": "On the flow map of the Benjamin-Ono equation on the torus", "authors": [ "Patrick Gerard", "Thomas Kappeler", "Peter Topalov" ], "categories": [ "math.AP" ], "abstract": "We prove that for any $t\\in\\mathbb{R}$, the flow map $\\mathcal{S}^t$ of the Benjamin-Ono equation on the torus continuously extends to the Sobolev space $H^{-s}_{r,0}$ for any $01/2$. Furthermore, we show that $\\mathcal{S}^t$ is sequentially weakly continuous on $H^{-s}_{r,0}$ for any $0\\le s<1/2$. Note that $- 1/2$ is the critical Sobolev exponent of the Benjamin-Ono equation.", "revisions": [ { "version": "v1", "updated": "2019-09-16T16:18:17.000Z" } ], "analyses": { "keywords": [ "benjamin-ono equation", "flow map", "sobolev space", "critical sobolev exponent" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }