{ "id": "1909.07312", "version": "v1", "published": "2019-09-16T16:16:52.000Z", "updated": "2019-09-16T16:16:52.000Z", "title": "On the energy of digraphs", "authors": [ "Juan R. Carmona" ], "categories": [ "math.CO" ], "abstract": "Let $D$ be a simple digraph with eigenvalues $z_1,z_2,...,z_n$. The energy of $D$ is defined as $E(D)= \\sum_{i=1}^n |Re(z_i)|$, is the real part of the eigenvalue $z_i$. In this paper a lower bound will be obtained for the spectral radius of $D$, wich improves some the lower bounds that appear in the literature \\cite{G-R}, \\cite{T-C}. This result allows us to obtain an upper bound for the energy of $ D $. Finally, digraphs are characterized in which this upper bound improves the bounds given in \\cite{G-R} and \\cite{T-C}.", "revisions": [ { "version": "v1", "updated": "2019-09-16T16:16:52.000Z" } ], "analyses": { "keywords": [ "upper bound", "lower bound", "eigenvalue", "simple digraph", "real part" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }