{ "id": "1909.06905", "version": "v1", "published": "2019-09-15T23:00:55.000Z", "updated": "2019-09-15T23:00:55.000Z", "title": "$p$-adic estimates of exponential sums on curves", "authors": [ "Joe Kramer-Miller" ], "categories": [ "math.NT" ], "abstract": "The purpose of this article is to prove a ``Newton over Hodge'' result for exponential sums on curves. Let $X$ be a smooth proper curve over a finite field $\\mathbb{F}_q$of characteristic $p\\geq 5$ and let $V \\subset X$ be an affine curve. For a regular function $\\overline{f}$ on $V$, we may form the $L$-function $L(\\overline{f},V,s)$ associated to the exponential sums of $\\overline{f}$. In this article, we prove a lower estimate on the Newton polygon of $L(\\overline{f},V,s)$. This estimate depends on the local monodromy of $f$ around each point $x \\in X-V$. As a corollary, we obtain a lower estimate on the Newton polygon of a curve with an action of $\\mathbb{Z}/p\\mathbb{Z}$ in terms of local monodromy invariants.", "revisions": [ { "version": "v1", "updated": "2019-09-15T23:00:55.000Z" } ], "analyses": { "subjects": [ "14F30", "11T23", "11G20" ], "keywords": [ "exponential sums", "adic estimates", "newton polygon", "lower estimate", "smooth proper curve" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }