{ "id": "1909.06393", "version": "v1", "published": "2019-09-13T18:13:52.000Z", "updated": "2019-09-13T18:13:52.000Z", "title": "Two years of non-thermal emission from the binary neutron star merger GW170817: rapid fading of the jet afterglow and first constraints on the kilonova fastest ejecta", "authors": [ "A. Hajela", "R. Margutti", "K. D. Alexander", "A. Kathirgamaraju", "A. Baldeschi", "C. Guidorzi", "D. Giannios", "W. Fong", "Y. Wu", "A. MacFadyen", "A. Paggi", "E. Berger", "P. K. Blanchard", "R. Chornock", "D. L. Coppejans", "P. S. Cowperthwaite", "T. Eftekhari", "S. Gomez", "G. Hosseinzadeh", "T. Laskar", "B. D. Metzger", "M. Nicholl", "K. Paterson", "D. Radice", "L. Sironi", "G. Terreran", "V. A. Villar", "P. K. G. Williams", "X. Xie", "J. Zrake" ], "comment": "Submitted to ApJ, 13 pages, 6 figures", "categories": [ "astro-ph.HE" ], "abstract": "We present Chandra and VLA observations of GW170817 at ~521-743 days post merger, and a homogeneous analysis of the entire Chandra data set. We find that the late-time non-thermal emission follows the expected evolution from an off-axis relativistic jet, with a steep temporal decay $F_{\\nu}\\propto t^{-1.95\\pm0.15}$ and a simple power-law spectrum $F_{\\nu}\\propto \\nu^{-0.575\\pm0.007}$. We present a new method to constrain the merger environment density based on diffuse X-ray emission from hot plasma in the host galaxy and we find $n\\le 9.6 \\times 10^{-3}\\,\\rm{cm^{-3}}$. This measurement is independent from inferences based on the jet afterglow modeling and allows us to partially solve for model degeneracies. The updated best-fitting model parameters with this density constraint are a fireball kinetic energy $E_0 = 1.5_{-1.1}^{+3.6}\\times 10^{49}\\,\\rm{erg}$ ($E_{iso}= 2.1_{-1.5}^{+6.4}\\times10^{52}\\, \\rm{erg}$), jet opening angle $\\theta_{0}= 5.9^{+1.0}_{-0.7}\\,\\rm{deg}$ with characteristic Lorentz factor $\\Gamma_j = 163_{-43}^{+23}$, expanding in a low-density medium with $n_0 = 2.5_{-1.9}^{+4.1} \\times 10^{-3}\\, \\rm{cm^{-3}}$ and viewed $\\theta_{obs} = 30.4^{+4.0}_{-3.4}\\, \\rm{deg}$ off-axis. The synchrotron emission originates from a power-law distribution of electrons with $p=2.15^{+0.01}_{-0.02}$. The shock microphysics parameters are %loosely constrained to $\\epsilon_{\\rm{e}} = 0.18_{-0.13}^{+0.30}$ and $\\epsilon_{\\rm{B}}=2.3_{-2.2}^{+16.0} \\times 10^{-3}$. We investigate the presence of X-ray flares and find no statistically significant evidence of $\\le2.5\\sigma$ of temporal variability at any time. Finally, we use our observations to constrain the properties of synchrotron emission from the deceleration of the fastest kilonova ejecta with energy $E_k^{KN}\\propto (\\Gamma\\beta)^{-\\alpha}$ into the environment, finding that shallow stratification indexes $\\alpha\\le6$ are disfavored.", "revisions": [ { "version": "v1", "updated": "2019-09-13T18:13:52.000Z" } ], "analyses": { "keywords": [ "binary neutron star merger gw170817", "kilonova fastest ejecta", "non-thermal emission", "jet afterglow", "first constraints" ], "note": { "typesetting": "TeX", "pages": 13, "language": "en", "license": "arXiv", "status": "editable" } } }