{ "id": "1909.06172", "version": "v1", "published": "2019-09-13T12:29:24.000Z", "updated": "2019-09-13T12:29:24.000Z", "title": "On the oddness of percolation", "authors": [ "C. Appert-Rolland", "H. J. Hilhorst" ], "comment": "4 pages, 1 figure", "categories": [ "cond-mat.stat-mech" ], "abstract": "Recently Mertens and Moore [arXiv:1909.01484v1] showed that site percolation \"is odd.\" By this they mean that on an $M\\times N$ square lattice the number of distinct site configurations that allow for vertical percolation is odd. We report here an alternative proof, based on recursive use of geometric symmetry, for both free and periodic boundary conditions.", "revisions": [ { "version": "v1", "updated": "2019-09-13T12:29:24.000Z" } ], "analyses": { "keywords": [ "periodic boundary conditions", "distinct site configurations", "site percolation", "geometric symmetry", "square lattice" ], "note": { "typesetting": "TeX", "pages": 4, "language": "en", "license": "arXiv", "status": "editable" } } }