{ "id": "1909.05939", "version": "v1", "published": "2019-09-12T20:34:06.000Z", "updated": "2019-09-12T20:34:06.000Z", "title": "On the entropy norm on $Ham(S^2)$", "authors": [ "Michael Brandenbursky", "Egor Shelukhin" ], "comment": "7 pages", "categories": [ "math.GT", "math.GR", "math.SG" ], "abstract": "In this note we prove that for each positive integer $m$ there exists a bi-Lipschitz embedding $Z^m\\to Ham(S^2)$, where $Ham(S^2)$ is equipped with the entropy metric. In particular, the same result holds when the entropy metric is substituted with the autonomous metric.", "revisions": [ { "version": "v1", "updated": "2019-09-12T20:34:06.000Z" } ], "analyses": { "keywords": [ "entropy norm", "entropy metric", "result holds" ], "note": { "typesetting": "TeX", "pages": 7, "language": "en", "license": "arXiv", "status": "editable" } } }