{ "id": "1909.05837", "version": "v1", "published": "2019-09-12T17:43:36.000Z", "updated": "2019-09-12T17:43:36.000Z", "title": "Estimation of expected value of function of i.i.d. Bernoulli random variables", "authors": [ "March T. Boedihardjo" ], "categories": [ "math.PR" ], "abstract": "We estimate the expected value of certain function $f:\\{-1,1\\}^{n}\\to\\mathbb{R}$. For example, with computer assistance, we show that if $A$ is the adjacency matrix of $(\\mathbb{Z}/15\\mathbb{Z})\\times(\\mathbb{Z}/15\\mathbb{Z})$ and $D$ is a diagonal $225\\times 225$ matrix with independent entries uniformly distributed on $\\{-1,1\\}$, then the expected value of the normalized trace of $(6I-(D+A))^{-1}$ is between $0.2006$ and $0.2030$.", "revisions": [ { "version": "v1", "updated": "2019-09-12T17:43:36.000Z" } ], "analyses": { "keywords": [ "bernoulli random variables", "expected value", "estimation", "computer assistance", "adjacency matrix" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }