{ "id": "1909.05734", "version": "v1", "published": "2019-09-12T14:55:31.000Z", "updated": "2019-09-12T14:55:31.000Z", "title": "Ramification of étale path torsors and harmonic analysis on graphs", "authors": [ "L. Alexander Betts", "Netan Dogra" ], "comment": "119 pages", "categories": [ "math.NT" ], "abstract": "We study the Galois action on paths in the $\\mathbb{Q}_\\ell$-pro-unipotent \\'etale fundamental groupoid of a hyperbolic curve $X$ over a $p$-adic field with $\\ell\\neq p$. We prove an Oda--Tamagawa-type criterion for the existence of a Galois-invariant path in terms of the reduction of $X$, as well as an anabelian reconstruction result determining the stable reduction type of $X$ in terms of its fundamental groupoid. We give an explicit combinatorial description of the non-abelian Kummer map of $X$ in arbitrary depth, and deduce consequences for the non-abelian Chabauty method for affine hyperbolic curves and for explicit quadratic Chabauty.", "revisions": [ { "version": "v1", "updated": "2019-09-12T14:55:31.000Z" } ], "analyses": { "keywords": [ "harmonic analysis", "path torsors", "ramification", "pro-unipotent etale fundamental groupoid", "affine hyperbolic curves" ], "note": { "typesetting": "TeX", "pages": 119, "language": "en", "license": "arXiv", "status": "editable" } } }