{ "id": "1909.05584", "version": "v1", "published": "2019-09-12T11:50:45.000Z", "updated": "2019-09-12T11:50:45.000Z", "title": "Large deviation inequalities for martingales in Banach spaces", "authors": [ "Xiequan Fan", "Davide Giraudo" ], "categories": [ "math.PR" ], "abstract": "Let $(X_i, \\mathcal{F}_i)_{i\\geq1}$ be a martingale difference sequence in a smooth Banach space. Let $S_n=\\sum_{i=1}^nX_i, n\\geq 1,$ be the partial sums of $(X_i, \\mathcal{F}_i)_{i\\geq 1}$. We give upper bounds on the quantity $\\mathbb{P}\\left(\\max_{1\\leq k\\leq n}\\lVert S_k\\rVert>nx\\right)$ in terms of $ n\\geq 1$ and $x>0$ in two different situations: when the martingale differences have uniformly bounded exponential moments and when the decay of the tail of the increments is polynomial.", "revisions": [ { "version": "v1", "updated": "2019-09-12T11:50:45.000Z" } ], "analyses": { "subjects": [ "60F10", "60G10", "60E15" ], "keywords": [ "large deviation inequalities", "martingale difference sequence", "smooth banach space", "partial sums", "uniformly bounded exponential moments" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }