{ "id": "1909.04962", "version": "v1", "published": "2019-09-11T10:31:08.000Z", "updated": "2019-09-11T10:31:08.000Z", "title": "Existence and multiplicity for an elliptic problem with critical growth in the gradient and sign-changing coefficients", "authors": [ "Colette De Coster", "Antonio J. Fernández" ], "categories": [ "math.AP" ], "abstract": "Let $\\Omega \\subset \\mathbb{R}^N$, $N \\geq 2$, be a smooth bounded domain. We consider the boundary value problem \\begin{equation} \\label{Plambda-Abstract-ch3} \\tag{$P_{\\lambda}$} -\\Delta u = c_{\\lambda}(x) u + \\mu |\\nabla u|^2 + h(x)\\,, \\quad u \\in H_0^1(\\Omega) \\cap L^{\\infty}(\\Omega)\\,, \\end{equation} where $c_{\\lambda}$ and $h$ belong to $L^q(\\Omega)$ for some $q > N/2$, $\\mu$ belongs to $\\mathbb{R} \\setminus \\{0\\}$ and we write $c_{\\lambda}$ under the form $c_{\\lambda}:= \\lambda c_{+} - c_{-}$ with $c_{+} \\gneqq 0$, $c_{-} \\geq 0$, $c_{+} c_{-} \\equiv 0$ and $\\lambda \\in \\mathbb{R}$. Here $c_{\\lambda}$ and $h$ are both allowed to change sign. As a first main result we give a necessary and sufficient condition which guarantees the existence of a unique solution to \\eqref{Plambda-Abstract-ch3} when $\\lambda \\leq 0$. Then, assuming that $(P_0)$ has a solution, we prove existence and multiplicity results for $\\lambda > 0$. Our proofs rely on a suitable change of variable of type $v = F(u)$ and the combination of variational methods with lower and upper solution techniques.", "revisions": [ { "version": "v1", "updated": "2019-09-11T10:31:08.000Z" } ], "analyses": { "subjects": [ "35J20", "35J25", "35J62" ], "keywords": [ "elliptic problem", "critical growth", "sign-changing coefficients", "multiplicity", "boundary value problem" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }