{ "id": "1909.03433", "version": "v1", "published": "2019-09-08T11:30:04.000Z", "updated": "2019-09-08T11:30:04.000Z", "title": "Distributionally Robust Optimization with Correlated Data from Vector Autoregressive Processes", "authors": [ "Xialiang Dou", "Mihai Anitescu" ], "categories": [ "math.OC", "cs.LG", "stat.CO", "stat.ML", "stat.OT" ], "abstract": "We present a distributionally robust formulation of a stochastic optimization problem for non-i.i.d vector autoregressive data. We use the Wasserstein distance to define robustness in the space of distributions and we show, using duality theory, that the problem is equivalent to a finite convex-concave saddle point problem. The performance of the method is demonstrated on both synthetic and real data.", "revisions": [ { "version": "v1", "updated": "2019-09-08T11:30:04.000Z" } ], "analyses": { "keywords": [ "distributionally robust optimization", "vector autoregressive processes", "correlated data", "finite convex-concave saddle point problem", "stochastic optimization problem" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }