{ "id": "1909.00030", "version": "v1", "published": "2019-08-30T18:34:47.000Z", "updated": "2019-08-30T18:34:47.000Z", "title": "Ramsey Goodness of Paths in Random Graphs", "authors": [ "Luiz Moreira" ], "categories": [ "math.CO" ], "abstract": "We say that a graph $G$ is Ramsey for $H_1$ versus $H_2$, and write $G \\to (H_1,H_2)$, if every red-blue colouring of the edges of $G$ contains either a red copy of $H_1$ or a blue copy of $H_2$. In this paper we study the threshold for the event that the Erd\\H{o}s--R\\'enyi random graph $G(N,p)$ is Ramsey for a clique versus a path. We show that $$G\\big( (1 + \\varepsilon) rn,p \\big) \\to (K_{r+1},P_n)$$ with high probability if $p \\gg n^{-2 / (r + 1)}$, and $$G\\big( rn + t, p \\big) \\to (K_{r+1},P_n)$$ with high probability if $p \\gg n^{-2 / (r + 2)}$ and $t \\gg 1/p$. Both of these results are sharp (in different ways), since with high probability $G(Cn,p) \\not\\to (K_{r+1}, P_n)$ for any constant $C > 0$ if $p \\ll n^{-2/(r + 1)}$, and $G(rn + t, p) \\not\\to (K_{r+1}, P_n)$ if $t \\ll 1/p$, for any $0 < p \\le 1$.", "revisions": [ { "version": "v1", "updated": "2019-08-30T18:34:47.000Z" } ], "analyses": { "keywords": [ "random graph", "ramsey goodness", "high probability", "blue copy", "red copy" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }