{ "id": "1908.11189", "version": "v1", "published": "2019-08-29T12:53:30.000Z", "updated": "2019-08-29T12:53:30.000Z", "title": "Some martingales associated with multivariate Bessel processes", "authors": [ "Miklos Kornyik", "Michael Voit", "Jeannette H. C. Woerner" ], "categories": [ "math.PR", "math-ph", "math.CA", "math.MP" ], "abstract": "We study Bessel processes on Weyl chambers of types A and B on $\\mathbb R^N$. Using elementary symmetric functions, we present several space-time-harmonic functions and thus martingales for these processes $(X_t)_{t\\ge0}$ which are independent from one parameter of these processes. As a consequence, $p(y):=\\mathbb E(\\prod_{i=1}^N (y-X_t^i))$ can be expressed via classical orthogonal polynomials. Such formulas on characteristic polynomials admit interpretations in random matrix theory where they are partially known by Diaconis, Forrester, and Gamburd.", "revisions": [ { "version": "v1", "updated": "2019-08-29T12:53:30.000Z" } ], "analyses": { "subjects": [ "60F15", "60F05", "60J60", "60B20", "60H20", "70F10", "82C22", "33C67" ], "keywords": [ "multivariate bessel processes", "martingales", "characteristic polynomials admit interpretations", "random matrix theory", "study bessel processes" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }