{ "id": "1908.10955", "version": "v1", "published": "2019-08-28T21:46:03.000Z", "updated": "2019-08-28T21:46:03.000Z", "title": "Finite time blow-up for the nematic liquid crystal flow in dimension two", "authors": [ "Chen-Chih Lai", "Fanghua Lin", "Changyou Wang", "Juncheng Wei", "Yifu Zhou" ], "comment": "48pages; any comment is welcome", "categories": [ "math.AP" ], "abstract": "We consider the initial-boundary value problem of a simplified nematic liquid crystal flow in a bounded, smooth domain $\\Omega \\subset \\mathbb R^2$. Given any $k$ distinct points in the domain, we develop a new {\\em inner--outer gluing method} to construct solutions which blow up exactly at those $k$ points as $t$ goes to a finite time $T$. Moreover, we obtain a precise description of the blow-up.", "revisions": [ { "version": "v1", "updated": "2019-08-28T21:46:03.000Z" } ], "analyses": { "keywords": [ "finite time blow-up", "simplified nematic liquid crystal flow", "initial-boundary value problem", "smooth domain" ], "note": { "typesetting": "TeX", "pages": 48, "language": "en", "license": "arXiv", "status": "editable" } } }