{ "id": "1908.10655", "version": "v1", "published": "2019-08-28T11:44:59.000Z", "updated": "2019-08-28T11:44:59.000Z", "title": "The Lipschitz truncation of functions of bounded variation", "authors": [ "Dominic Breit", "Lars Diening", "Franz Gmeineder" ], "categories": [ "math.AP" ], "abstract": "We construct a Lipschitz truncation which approximates functions of bounded variation in the area-strict metric. The Lipschitz truncation changes the original function only on a small set similar to Lusin's theorem. Previous results could only give estimates on the Lebesgue measure of the set where the Lipschitz approximations differ from the original function.", "revisions": [ { "version": "v1", "updated": "2019-08-28T11:44:59.000Z" } ], "analyses": { "subjects": [ "26B30", "26B35" ], "keywords": [ "bounded variation", "original function", "lipschitz approximations differ", "lipschitz truncation changes", "small set similar" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }