{ "id": "1908.10183", "version": "v1", "published": "2019-08-27T13:27:01.000Z", "updated": "2019-08-27T13:27:01.000Z", "title": "A note on Lusin-type approximation of Sobolev functions on Gaussian spaces", "authors": [ "Alexander Shaposhnikov" ], "categories": [ "math.FA", "math.MG", "math.PR" ], "abstract": "We extend Shigekawa's Meyer-type inequality in $L^1$ to more general Ornstein-Uhlenbeck operators and establish new approximation results in the sense of Lusin for Sobolev functions $f$ with $|\\nabla f| \\in L\\log L$ on infinite-dimensional spaces equipped with Gaussian measures. The proof relies on some new pointwise estimate for the approximations based on the corresponding semigroup which can be of independent interest.", "revisions": [ { "version": "v1", "updated": "2019-08-27T13:27:01.000Z" } ], "analyses": { "subjects": [ "60H07", "28C20", "46E35" ], "keywords": [ "sobolev functions", "lusin-type approximation", "gaussian spaces", "extend shigekawas meyer-type inequality", "general ornstein-uhlenbeck operators" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }