{ "id": "1908.09331", "version": "v1", "published": "2019-08-25T14:03:16.000Z", "updated": "2019-08-25T14:03:16.000Z", "title": "Convergence rate for Galerkin approximation of the stochastic Allen-Cahn equations on 2D torus", "authors": [ "Ting Ma", "Rongchan Zhu" ], "categories": [ "math.PR", "cs.NA", "math.AP", "math.NA" ], "abstract": "In this paper we discuss the convergence rate for Galerkin approximation of the stochastic Allen-Cahn equations driven by space-time white noise on $\\T$. First we prove that the convergence rate for stochastic 2D heat equation is of order $\\alpha-\\delta$ in Besov space $\\C^{-\\alpha}$ for $\\alpha\\in(0,1)$ and $\\delta>0$ arbitrarily small. Then we obtain the convergence rate for Galerkin approximation of the stochastic Allen-Cahn equations of order $\\alpha-\\delta$ in $\\C^{-\\alpha}$ for $\\alpha\\in(0,2/9)$ and $\\delta>0$ arbitrarily small.", "revisions": [ { "version": "v1", "updated": "2019-08-25T14:03:16.000Z" } ], "analyses": { "keywords": [ "convergence rate", "galerkin approximation", "2d torus", "stochastic allen-cahn equations driven", "stochastic 2d heat equation" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }