{ "id": "1908.08487", "version": "v1", "published": "2019-08-22T16:47:18.000Z", "updated": "2019-08-22T16:47:18.000Z", "title": "Lower bounds and fixed points for the centered Hardy--Littlewood maximal operator", "authors": [ "Samuel Zbarsky" ], "categories": [ "math.CA" ], "abstract": "For all $p>1$ and all centrally symmetric convex bodies $K\\subset \\mathbb{R}^d$ define $Mf$ as the centered maximal function associated to $K$. We show that when $d=1$ or $d=2$, we have $||Mf||_p\\ge (1+\\epsilon(p,K))||f||_p$. For $d\\ge 3$, let $q_0(K)$ be the infimum value of $p$ for which $M$ has a fixed point. We show that for generic shapes $K$, we have $q_0(K)>q_0(B(0,1))$.", "revisions": [ { "version": "v1", "updated": "2019-08-22T16:47:18.000Z" } ], "analyses": { "keywords": [ "centered hardy-littlewood maximal operator", "fixed point", "lower bounds", "centrally symmetric convex bodies", "centered maximal function" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }