{ "id": "1908.08369", "version": "v1", "published": "2019-08-22T13:38:45.000Z", "updated": "2019-08-22T13:38:45.000Z", "title": "Existence and multiplicity results for a new $p(x)$-Kirchhoff problem", "authors": [ "M. K. Hamdani", "A. Harrabi", "F. Mtiri", "D. D. Repovš" ], "journal": "Nonlinear Anal. 190 (2020), art. 111598, 15 pp", "doi": "10.1016/j.na.2019.111598", "categories": [ "math.AP" ], "abstract": "We study the existence and multiplicity results for the following nonlocal $p(x)$-Kirchhoff problem: \\begin{equation} \\label{10} \\begin{cases} -\\left(a-b\\int_\\Omega\\frac{1}{p(x)}| \\nabla u| ^{p(x)}dx\\right)div(|\\nabla u| ^{p(x)-2}\\nabla u)=\\lambda |u| ^{p(x)-2}u+g(x,u) \\mbox{ in } \\Omega, \\\\ u=0,\\mbox{ on } \\partial\\Omega, \\end{cases} \\end{equation} where $a\\geq b > 0$ are constants, $\\Omega\\subset \\mathbb{R}^N$ is a bounded smooth domain, $p\\in C(\\overline{\\Omega})$ with $N>p(x)>1$, $\\lambda$ is a real parameter and $g$ is a continuous function. The analysis developed in this paper proposes an approach based on the idea of considering a new nonlocal term which presents interesting difficulties.", "revisions": [ { "version": "v1", "updated": "2019-08-22T13:38:45.000Z" } ], "analyses": { "subjects": [ "35B65", "35J55", "35J65" ], "keywords": [ "kirchhoff problem", "multiplicity results", "bounded smooth domain", "nonlocal term", "real parameter" ], "tags": [ "journal article" ], "publication": { "publisher": "Elsevier" }, "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }