{ "id": "1908.07737", "version": "v1", "published": "2019-08-21T07:48:48.000Z", "updated": "2019-08-21T07:48:48.000Z", "title": "Some results on vanishing coefficients in infinite product expansions", "authors": [ "Nayandeep Deka Baruah", "Mandeep Kaur" ], "comment": "15 pages", "journal": "The Ramanujan Journal, 2019", "doi": "10.1007/s11139-019-00172-x", "categories": [ "math.NT" ], "abstract": "Recently, M. D. Hirschhorn proved that, if $\\sum_{n=0}^\\infty a_nq^n := (-q,-q^4;q^5)_\\infty(q,q^9;q^{10})_\\infty^3$ and $\\sum_{n=0}^\\infty b_nq^n:=(-q^2,-q^3;q^5)_\\infty(q^3,q^7;q^{10})_\\infty^3$, then $a_{5n+2}=a_{5n+4}=0$ and $b_{5n+1}=b_{5n+4}=0$. Motivated by the work of Hirschhorn, D. Tang proved some comparable results including the following: If $ \\sum_{n=0}^\\infty c_nq^n := (-q,-q^4;q^5)_\\infty^3(q^3,q^7;q^{10})_\\infty$ and $\\sum_{n=0}^\\infty d_nq^n := (-q^2,-q^3;q^5)_\\infty^3(q,q^9;q^{10})_\\infty$, then $c_{5n+3}=c_{5n+4}=0$ and $d_{5n+3}=d_{5n+4}=0$. In this paper, we prove that $a_{5n}=b_{5n+2}$, $a_{5n+1}=b_{5n+3}$, $a_{5n+2}=b_{5n+4}$, $a_{5n-1}=b_{5n+1}$, $c_{5n+3}=d_{5n+3}$, $c_{5n+4}=d_{5n+4}$, $c_{5n}=d_{5n}$, $c_{5n+2}=d_{5n+2}$, and $c_{5n+1}>d_{5n+1}$. We also record some other comparable results not listed by Tang.", "revisions": [ { "version": "v1", "updated": "2019-08-21T07:48:48.000Z" } ], "analyses": { "subjects": [ "33D15", "11F33" ], "keywords": [ "infinite product expansions", "vanishing coefficients", "comparable results", "hirschhorn" ], "tags": [ "journal article" ], "publication": { "publisher": "Springer" }, "note": { "typesetting": "TeX", "pages": 15, "language": "en", "license": "arXiv", "status": "editable" } } }