{ "id": "1908.07224", "version": "v1", "published": "2019-08-20T08:48:13.000Z", "updated": "2019-08-20T08:48:13.000Z", "title": "The global well-posedness for the compressible fluid model of Korteweg type", "authors": [ "Miho Murata", "Yoshihiro Shibata" ], "categories": [ "math.AP" ], "abstract": "In this paper, we consider the compressible fluid model of Korteweg type which can be used as a phase transition model. It is shown that the system admits a unique, global strong solution for small initial data in $\\mathbb R^N$, $N \\geq 3$. In this study, the main tools are the maximal $L_p$-$L_q$ regularity and $L_p$-$L_q$ decay properties of solutions to the linearized equations.", "revisions": [ { "version": "v1", "updated": "2019-08-20T08:48:13.000Z" } ], "analyses": { "keywords": [ "compressible fluid model", "korteweg type", "global well-posedness", "phase transition model", "small initial data" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }